Formation of Au nanostructures through an alumina mask by laser-assisted deposition.
نویسندگان
چکیده
We report a new method to produce ordered arrays of metal nanostructures on substrates. The method employs a through-hole nanoporous alumina membrane as a mask that is attached onto the substrate, silicon in this study. The material of deposition, Au in this study, was provided by pulsed laser ablation of a target gold. At an early stage of the deposition, a significant portion of Au penetrated the alumina through-holes and formed an ordered nanodot array on the silicon surface. At the later stage, the through-hole deposition was blocked by the growth of Au film on the top surface of the alumina, so that the heights of the Au nanodots were limited to about 10 nm under current experimental conditions. Subsequent attempts to clean up the top surface of the alumina with a lower power laser illumination resulted in the formation of new nanostructures around the alumina pores, nanospheres, or nanorings, depending on the fluence of the laser and the duration of the cleanup. We will discuss the underlying mechanism of the formation of these nanostructures.
منابع مشابه
Au-Capped GaAs Nanopillar Arrays Fabricated by Metal-Assisted Chemical Etching
GaAs nanopillar arrays were successfully fabricated by metal-assisted chemical etching using Au nanodot arrays. The nanodot arrays were formed on substrates by vacuum deposition through a porous alumina mask with an ordered array of openings. By using an etchant with a high acid concentration and low oxidant concentration at a relatively low temperature, the area surrounding the Au/GaAs interfa...
متن کاملFormation of Gold Microparticles by Ablation with Surface Plasmons
The formation of gold microparticles on a silicon substrate through the use of energetic surface plasmons is reported. A laser-assisted plasmonics system was assembled and tested to synthesize gold particles from gold thin film by electrical field enhancement mechanism. A mask containing an array of 200 nm diameter holes with a periodicity of 400 nm was prepared and placed on a silicon substrat...
متن کاملFabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching
In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...
متن کاملAu nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry
We present a fast and flexible method for the fabrication of Au nanocolumns. Au nanostructures were produced by pulsed laser deposition in air at atmospheric pressure. No impurities or Au compounds were detected in the resulting samples. The nanoparticles and nanoaggregates produced in the ablated plasma at atmospheric pressure led to the formation of chain-like nanostructures on the substrate....
متن کاملSystematic Control of Self-Assembled Au Nanoparticles and Nanostructures Through the Variation of Deposition Amount, Annealing Duration, and Temperature on Si (111)
The size, density, and configurations of Au nanoparticles (NPs) can play important roles in controlling the electron mobility, light absorption, and localized surface plasmon resonance, and further in the Au NP-assisted nanostructure fabrications. In this study, we present a systematical investigation on the evolution of Au NPs and nanostructures on Si (111) by controlling the deposition amount...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 5 2 شماره
صفحات -
تاریخ انتشار 2005